2020 Keystone Symposia Conference Hypoxia: Molecules, Mechanisms and Disease Poster 3007

Selective Inhibition of Hypoxia-Inducible Factor (HIF)-2a for the Treatment of Cancer

Dana Piovesan, Kenneth V Lawson, Sean Cho, Akshata Udyavar, Alejandra Lopez, Ada Chen, Jennifer Au, Cesar Meleza, Xiaoning Zhao, Stephen W Young, Anh Tran, Samuel L Drew, Lixia Jin, Manmohan Leleti, Elaine Ginn, Uli Schindler, Jay P Powers, Matthew J Walters, Kelsey E Sivick Gauthier

Arcus Biosciences, Inc.; 3928 Point Eden Way, Hayward, CA 94545 (USA)

- Inducible Factor (HIF)⁴.
- HIF consists of an oxygen-regulated alpha monomer, of which there are three isoforms (HIF-1 α , HIF-2 α , and HIF-3 α)⁴.
- ✤ Alpha monomers heterodimerize with a constitutively-expressed beta monomer (HIF-1 β /ARNT) using Per-ARNT-SIM (PAS) protein-protein interaction domains⁴.
- ↔ Disruption of HIF- α /HIF-1 β heterodimer formation is an effective means to inhibition of HIF-2 α -dependent gene transcription⁴.

Blood

vesse

Figure 4. Human T cells are functional, yet less proliferative in hypoxia in a HIF-2α independent manner. Primary human CD8⁺ T cells isolated from the blood of three to six donors (symbols) were left untreated (-) or activated (+) using a α CD2/ α CD3/ α CD28 bead cocktail in normoxia (21% O₂) or hypoxia $(1\% O_2)$ for three days in the presence of 10 μ M HIF-2 α antagonist. (A) Median ± range of IFN γ secretion as measured by bead array and proliferation capacity as measured by Cell-Trace Violet staining and flow cytometry. *p<0.05. Statistics were calculated using Wilcoxon matched-pairs signed rank test.

Figure 6. Analysis of HIF- α isoform transcriptional biology. (A) Overview. Shown is the experimental outline for CRISPR- (Δ) based approach to derive HIF-α isoform-specific gene signatures. Experiments performed on non-clonal population of Hep3B cells with KO efficiency of 92%, 87.5% and 74% for HIF-1a, HIF-2a and HIF-3a respectively. Hep3B cells nucleofected with RNP complex alone or with HIF-a isoform-specific guide RNAs were exposed to hypoxia for 16 h. Venn diagram (A) illustrating genes that are upregulated in 1% O₂ and rescued in each experimental condition (FDR<0.05, Fold change>2) (B) Validation. Shown are the mean ± SEM of epo and pdk1 transcript levels. ****p<0.0001. Statistics calculated using one-way ANOVA with Dunnett's multiple comparisons test vs 1% O₂ control. Gene expression quantitation done by qPCR (2^{-ΔCt}). (C) Hypoxia induced HIF-1a specific, HIF-2a specific and common genes. Volcano plot of differentially expressed genes (DEG; FDR<0.05, Fold change>2) that are HIF-1 α driven, HIF-2 α driven and driven by both in 1% O₂. (D) Hallmark pathways. Pathway scores were calculated using ssGSEA⁸ against MSigDB Hallmark⁹ genesets. (E) Genes modulated by HIF-3α are hypoxia independent. DEG in HIF-3α KO (FDR<0.05, Fold change>2) that are independent of hypoxia are involved in oxidative phosphorylation (negatively regulated by HIF-3α) and β-catenin/Wnt signaling (potential direct transcriptional target(s) of HIF-3 α).

Effects of HIF-2α Inhibition on TME in Xenograft

specific signatures were calculated using Cox proportional hazards model against overall survival in cancer patients in TCGA¹⁰. (B) HIF-2α specific and HIF-1α specific scores predict survival in pancreatic adenocarcinoma, colon adenocarcinoma and lung squamous cell carcinoma. HIF-2a scores were binarized using optimal cutoffs for maximally selected rank statistics with at least 20% of patients in one group. Logrank test was used to estimate p-values.

SUMMARY

Several compound series are undergoing SAR optimization to develop novel HIF-2α inhibitors. Representative compounds from each series show both HIF-2α binding and functional activity in cell-based assays

(Figure 2).

- \clubsuit In human cells, HIF-2 α inhibition does not significantly impact T cell function (Figure 4) but does decrease expression of genes proteins implicated in encode that in macrophages and tumorigenicity endothelial cells (Figure 3, 5).
- ✤ A representative inhibitor selectively inhibited HIF-2a target gene expression in Hep3B cells (Figure 6).
- derived ↔ A gene signature from pharmacological inhibition of HIF-2α as well as deletion of HIF- α isoforms in Hep3B to identify cells was used isoformprofiles dependent gene expression (Figure 6).
- ccRCC xenograft tumors show different immune compositions and likely contribute to differences in phenotype with HIF-2 α inhibition (Figure 7).
- \Leftrightarrow HIF-2α and HIF-1α specific profiles derived from Hep3B cells were used to predict survival in various tumor types from TCGA (Figure 8).

CITATIONS

1)	Wallace <i>et al.</i> (2016) Cancer Res 76, 5491-5500.	5) 6)	Petrova <i>et al.</i> , (2018) Oncogenesis 7 Feng <i>et al.</i> (2019) Cancers (Basel) 11, 12. Wehn <i>et al.</i> (2018) J Med Chem 61, 9691-9721. Barbie et al. (2009) Nature 462.7269
2)	Courtney <i>et al.</i> (2018) J Clin Oncol 36, 867-874.	7)	
3)	Hockel & Vaupel (2001) JNCI 93, 266-	8)	

microenvironment. Hypoxia is an important feature of the tumor microenvironment (TME). It influences the interactions between cancer, stromal and immune cells, representing a critical step in the tumorigenic process. During tumor development, cells within the TME often have limited access to nutrients and oxygen, which creates a hypoxic environment that promotes a number of events including angiogenesis, cancer cell survival and progression as well as immunosuppression⁵. In a hypoxic TME, tumor vasculature becomes dysfunctional, and infiltrating myeloid precursor cells differentiate into more suppressive cell types such as MDSCs and tumor-associated macrophages, further contributing to cancer progression⁵. Figure

qPCR (2^{- Δ Ct}). PT2385 was synthesized by Arcus utilizing methodology described in Wehn *et al.*⁷. (E) Common hypoxia-induced gene signature. Venn diagram histograms are vehicle and blue histograms are PT2385 treated mice. showing DEG in 1% O₂ vs. 21% O₂ from Hep3B cells and M2 macrophages and a heatmap of the genes common to both cell types (FDR<0.05, Fold change>2).

Figure 5. Exposure of M2-polarized or M0 macrophages to hypoxia drives a pro-tumorigenic gene expression profile that is decreased by HIF-2α inhibition. Figure 7 Differential effects of HIF-2α antagonist in two VHL-mutated ccRCC

Primary human CD14+ monocytes isolated from the blood of six donors (symbols) were differentiated in normoxia for six days with M-CSF before polarizing with IL-4 xenograft tumor models. (A) Immune composition of 786-O and A-498 tumors. (B)

for one day in normoxia or hypoxia in the presence of 10 μM HIF-2α inhibitor PT2385. Shown is (A) a heatmap of differentially expressed genes that are altered in 786-O tumors treated with HIF-2α inhibitor, PT2385 (60 mg/kg) PO QD show

hypoxia and rescued with HIF-2α inhibition (FDR<0.05, Fold change>2) and (B) differentially expressed genes (DEG) involved in angiogenesis and chemoattraction. decreased infiltrating tumor associated macrophages (TAMs), increased NK cells and (C) HIF-2α inhibitor treated hypoxic M2-polarized macrophages does not rescue M2-mediated CD8+ T cell suppression. IFNγ secretion as measured by bead decreased Arginase1 (Arg1) expression on cancer cells. (C) A-498 tumors treated with

array and proliferation capacity as measured by Cell-Trace Violet staining and flow cytometry. Act, activation. (D) Macrophage chemokine secretion is modulated in HIF-2a inhibitor PT2385 have decreased CXCR4 expression on TAMs and NK cells hypoxia and rescued with HIF-2α inhibition. Secretion measured by Luminex Mean ± Range. **** p<0.001, ** p<0.001, ** p<0.05. Statistics were and decreased Arg1 on cancer cells. *p<0.05 ** p<0.01 *** p<0.001. Statistics were

calculated using one-way ANOVA with Dunnett's multiple comparisons test vs 1% O₂ DMSO control for each gene/chemokine. Gene expression quantitation done by calculated using Mann-Whitney test. Red Histograms are isotype control, black

