Altered pan-Ras pathway and activating mutations in EGFR result in elevated CD73 in multiple cancers

Udyavar AR, DiRenzo D, Piovesan D, Ashok D, Anderson AE, Young SW, Walters MJ, Tan JBL
Arcus Biosciences, Inc. 3928 Point Eden Way, Hayward, CA 94545 (USA)

Regression analysis: We used linear models adjusted for individual tumor types to assess if the expression of CD73 and other genes in the adenosine fingerprint can be predicted by alterations in Commons). For regression models, multiple testing correction was performed using BenjaminiHochberg method.
Survival analysis: Kaplan-Meier curves were plotted in R showing log-rank p-values. Cox-
regression analysis were used to compute hazard ratios and p-values egression analysis were used to compute hazard ratios and p-values.
Histology: CD73 (Cell Signaling, D7F9A) immuno-histochemistry (IHC) was performed on sections of formalin fixed paraffin embedded (FFPE) tumor tissue and quantified using QuPath

Cancer cell lines: RNAseq data was obtained from Broad's Cancer Cell Line Encyclopedia (CCLE) database. RNA from human cancer cell lines was extracted and converted into cDNA. Real-time qPCR was performed using Taqman probes. HPRT1 was used as the housekeeping gene and raw data was analyzed using the $2-\Delta C T$ method. CD73, CD39 and CD26 protein expression on human cancer cell lines was determined using flow cytometry

Results

KRAS, BRAF and EGFR strongly predict adenosine fingerprint expression in pan-cancer TCGA

Figure 1. (A) CD73 and TNAP expression was derived from pan-cancer TCGA dataset. Numbers on Y-axis indicate ratio of $\log _{2}$ CPM values for CD73 and TNAP. Tumors on left are high in CD73 and
low in TNAP whereas tumors on right are high in TNAP and low in CD73. (B) Linear model estimates low in TNAP whereas tumors on right are high in TNAP and low in CD73. (B) Linear model estimates
adjusted for tumor type of alterations in cancer driver genes that predict CD73 expression. (C) X-axis adjusted for tumor type of alterations in cancer driver genes that predict CD73 expression . (C) X-axis
denotes the positive (left) and negative (right) regulators of CD73 from panel B. Y-axis shows linear model estimates adjusted for tumor type for each gene in the adenosine fingerprint. Stars indicate
significant FDR (*** $<0.001,{ }^{* *}<0.01,{ }^{*}<0.2$).

Figure 2. (A) shows frequency and type of alterations in KRAS, BRAF and EGFR from cBioPortal. Inset shows number of mutations in a given gene. (B) Kaplan-Meier curves show impact of CD High protein expression of CD73 in KRAS mutated patients compared

[^0]High expression of adenosine fingerprint in KRAS altered versus wildtype in CRC and NSCLC cell lines

Figure 4. (A) Heatmap of adenosine fingerprint in Broad's CCLE RNAseq data for representative CRC and NSCLC cell lines. (B) Correlation scatterplot of CD73 expression in cancer cell lines from
panel A and qPCR. (C) Flow cytometry proteomic validation of CD73, CD39 and CD26 expression in panel A and qPCR. (C) Fow cytometry proteonis
KRAS WT and ALT CRC and NSCLC cell lines.
High expression of adenosine fingerprint and PD1 in T cells correlates with resistance to anti-PD1 in KRAS and EGFR mutant NSCLC

Figure 5. Left to right - RNAseq gene expression (dataset from Koyama et.al Nat. Comm. (2015)) of CD73 (Nt5e), CD39 (Entpd1), A 2 R (Adora2a) and PD1 (Pdcd1) in T cells derived from either EGFR L858R/T790M mutant or KRAS G12D mutant mouse tumors that were either untreated (Untrt) or resistant to anti-PD1 (aPD1-R). P-values denote significance by Wilcoxon ranked-sum test.

Conclusions

Alterations in KRAS, BRAF and EGFR as well as pan-Ras classifier score (data not shown) strongly predict high expression of the adenosine fingerprint in pan-cancer TCGA
stigAS BRAF hapression of the adenosine fingerpint in pan-cancer TCGA. with poor BRAF and EGFR wild-type patients, high CD73 expression is significantly associated and KRAS mutant patients, and good prognosis in BRAF mutant patients. Adenosine fingerprint exhibits higher expression in KRAS mutant versus NSCLC patients as well as cell lines at the gene and protein level.
EGFR mutant NSCLC patients have significantly poor prognosis associated with lower rate of durable clinical benefit with pembrolizumab treatment (data not shown)
High expression of adenosine fingerprint and PD1 in T cells is associated with resistance to antiD1 therapy in mutant KRAS and EGFR murine NSCLC.

[^0]: Pigure 3. (A) Representaive CD73 IHC images or KRAS wild-type and altered NSCLC and CRC
 patients. (B) Quantification of percent CD73 positive area in CRC and NSCLC patients.

