2020 AACR-NCI-EORTC Molecular Targets and Cancer Therapeutics

Discovery and Characterization of Novel, Potent, and Selective Hypoxia-Inducible Factor (HIF)-2α Inhibitors

Kenneth V Lawson, Kelsey E Sivick Gauthier, Dana Piovesan, Jeremy T A Fournier, Brandon R Rosen, Artur Mailyan, Joel W Beatty, Lixia Jin, Manmohan Leleti, Elaine Ginn, Akshata R Udyavar, Ada Chen, Jennifer Au, Cesar A Meleza, Stephen W. Young, Matthew J Walters, Jay P Powers

Abstract 32

OVERVIEW

- Preclinical and clinical evidence suggests that HIF-2α inhibition is a valid approach to destroy tumor cells, particularly in clear cell renal carcinoma (ccRCC)^{1,2}.
- Arcus Biosciences is developing novel HIF-2α-specific smallmolecule inhibitors and investigating the biology of HIF-2α in various cancer and non-cancer cell subsets.
- ✤ Here we describe the application of a pharmacophore mapping and structure-based design approach to discover multiple novel series of HIF-2 α inhibitors which are characterized via a collection of in vitro assays. Highly optimized inhibitors exhibit low-nanomolar potency against HIF-2 α and a favorable pharmacokinetic profile.

HIF-2α BIOLOGY & REGULATION

- The solid tumor microenvironment (TME) can be hypoxic and cancer cells require induction of genes associated with metabolism, proliferation, and angiogenesis to survive and metastasize³.
- The master transcriptional regulators of hypoxia-induced genes are the Hypoxia-Inducible Factor (HIF) proteins⁴.
- ✤ HIF consists of an oxygen-regulated alpha monomer, of which there are three isoforms (HIF-1 α , HIF-2 α , and HIF-3 α)⁴.
- Alpha monomers heterodimerize with a constitutively-expressed beta monomer (HIF-1β/ARNT) using Per-ARNT-SIM (PAS) protein-protein interaction domains⁴.
- Disruption of HIF- α /HIF-1 β heterodimer formation is an effective means to inhibition of HIF-2α-dependent gene transcription⁴

Figure 1. **Overview of HIF-2**α **regulation.** In normoxia (left), proline residues present in the oxygen-dependent degradation domain (ODDD) of HIF-2α are hydroxylated by prolyl hydroxylases (PHDs), allowing for recognition by the von Hippel-Lindau (pVHL) E3-ubiquitin ligase complex and subsequent ubiquitination and proteasomal degradation. Upon exposure to low oxygen conditions (hypoxia, right) or in the case of *vhl* mutation or silencing (pseudohypoxia), HIF-2α subunits accumulate and dimerize with HIF-1β/ARNT, resulting in transcription of various gene sets, some of which are pro-tumorigenic, downstream of hypoxiaresponse element (HRE) DNA binding sites. Adapted from Yu et al.⁵.

INITIAL DESIGN, OPTIMIZATION, AND CHARACTERIZATION OF ARCUS HIF-2α INHIBITORS Fundamentals of Targeting the HIF-2α/ARNT Complex Optimization of Series 1 HIF-2α Inhibitors Small molecules have been designed to inhibit HIF-2a/ARNT heterodimerization by binding a small, internal cavity in the HIF-2α PAS-B domain. This hydrophobic cavity (shown as blue slate surface below) is fully enclosed with a volume of 290Å³, and is occupied by 8 water molecules in the apo form. It has been demonstrated that small molecules can enter -------Assay HIF-2α / ARNT PDB-4ZP4 (2.4 Å) HIF-2α 786-O Luc. IC₅₀ (nM) 786-O Reporter (control, nM) HIF-2 α SPA IC₅₀ (nM)VEGF Secretion IC₅₀ Basis for regulation of protein-protein Table 2. Potency of select series 1 inhibitors. HIF/control reporter and SPA assays performed as described in Table 1. VEGF Protein Secretion Assay - 786-O cells were treated with inhibitors for 48 hours at 37 °C 5% CO₂ (Media replaced with fresh after iHIF-2α 24 hr). VEGF in the cell supernatant was quantified by AlphaLISA (Perkin Elmer) Figure 2. X-ray structure of HIF-2α/ARNT complex. VEGE Secretion RNT PAS-F --- Compound 3 Inhibitor design challenges: Compound 4 Inhibitor induced dissociation of Small internal pocket limits ligand size HIF-2α/ARNT complex] • MK-6482 Binding affinity may not correlate with functional activity High affinity ligands often possess undesirable 5 25physicochemical properties (high lipophilicity) → Gene transcription inactive -10 -9 -8 -7 -6 -5 -4

the cavity and induce a subtle conformation change of the HIF-2α PAS-B domain, which, in turn. results destabilization of the HIF-2α/ARNT complex.⁶

Small molecule binds to HIF-2α PAS-B cavity → Conformational change

HIF dimerization disrupted

Assay	Series 1	Series 2	Series 3
HIF-2α 786-O Luc. (Cellular) IC ₅₀ (μM)	2.4	1.12	0.72
786-O Reporter (control, μM)	> 50	> 50	> 50
HIF-2 α TSA T _M Δ (degrees)	5.1	5.3	6.3
HIF-2α MST <i>K</i> _D (μΜ)	1.5	0.44	0.13
HIF-2α ITC <i>K</i> _D (μΜ)	0.44	1.25	0.66
HIF-2 $lpha$ SPA IC ₅₀ (μ M)	1.0	0.96	0.49

Table 1. Representative initial lead examples for Arcus Series 1, Series 2, and Series 3 HIF-2α inhibitor compounds. (MST = microscale thermophoresis, ITC = isothermal calorimetry) Figure 3. A & B) HIF and Control Cellular Reporter Assay. 786-O renal adenocarcinoma cells (mutant for VHL and HIF-1α) stably expressing HIF or control CMV luciferase reporter constructs (Qiagen) were treated with Arcus compounds for 20 hours (h) at 37°C 5% CO₂. C) Scintillation Proximity Assay (SPA). 50 nM PAS-B was incubated at room temperature with Arcus compounds in 2% DMSO for 60 min and 3 µg copper chelate PVT SPA beads for an additional 45 min before to addition of 25 nM ³H-tracer and luciferase measurement. **D)** Thermal Shift Assay (TSA). Arcus compounds were incubated with PAS-B prior to addition of dye and fluorescence measurement. ΔT_m was calculated by normalizing compound T_m to DMSO T_m . Dotted lines, DMSO only.

Arcus Biosciences, Inc.; 3928 Point Eden Way, Hayward, CA 94545 (USA)

Extensive Characterization of Initial HIF-2α Initial Lead Series

Figure 4. A) Representative VEGF dose-response curve of optimized Arcus HIF-2α inhibitors. MK-6482 included for comparison.^{7,8} B) X-ray co-crystal to HIF-2a/ARNT complex confirms inhibitor binding to PAS-B domain hydrophobic cavity.

Arcus Compound 3 Selectively Inhibits HIF-2α Gene Transcription

Series 1 inhibitors were optimized to improve potency and pharmacokinetic properties via structure-based design and iterative interpretation of structure activity relationships. A selection of optimized advanced prototypes are shown in Table 2 which potently inhibit HIF-2α function in numerous assays formats without appreciable off-target activity.

Arcus Compound 1	Arcus Compound 2	Arcus Compound 3	Arcus Compound 4	MK-6482 (PT2977, competitor) ⁷
61.5	9.4	15.5	4.2	22.8
>10,000	>10,000	>10,000	>10,000	> 10,000
64.0	22.7	14.9	14.6	30.4
n.d.	75.9	51.1	21.1	93.1

Figure 5. Prototype HIF-2α inhibitor (Compound 3) inhibits HIF-2 α -, but not HIF-1α-, mediated transcription of protumorigenic gene sets.

Hep3B hepatocellular carcinoma cells (wildtype for VHL and HIF-1 α) were treated with 0.1, 1.0, or 10 µM of Compound 3 or MK-6482 and exposed to hypoxia $(1\% O_2)$ for 16 h prior to RNA isolation. Gene expression levels of HIF-2α target genes (EPO and PAI1) and HIF-1 α genes (PDK1 and PGK1) were determined by qPCR (2^{- Δ Ct} method) relative to HPRT1.

PHARMACOKINETIC PROFILING

Pharmacokinetic Characterization of Compound 3

Our advanced prototype HIF-2a inhibitor, Compound 3, exhibited a favorable in vitro pharmacokinetic profile with low intrinsic clearance in dog and human hepatocytes (Table 3). Furthermore, Compound 3 exhibited negligible inhibition against a panel of CYP isoforms (Table 4) and no timedependent CYP inhibition (not shown). Compound 3 is further characterized by moderate-to-low clearance in rat and dog with high bioavailability in both species (Table 5).

T _{1/2}			
(min) 21	100	340	950
CL_{int} 33 (μL/min/10 ⁶ cells)	6.9	2.1	0.7

 Table 3. Summary of hepatocyte stability in various species

		CYP Is	soform			
	2C8	2C9	2C19	2D6	3A4	
IC₅₀ (μ Μ)	>40	39.0	16.2	>40	>40	

Table 4. Compound was evaluated in vitro for its potential to inhibit major human drug metabolizing enzymes of the cytochrome P450 family.

Preclinical Species Pharmacokinetics

Species	CL (L/h/kg)	Vss (L/kg)	T_{1/2} (h)	F (%)
Rat	1.94	3.04	1.3	79
Dog	0.26	1.25	3.7	78

Table 5. Summary of experimental PK parameters in rat and dog. Rats were dosed
 0.25 mg/kg IV in DMAC:Ethanol:Propylene Glycol:Saline (10:10:30:50) and 2 mg/kg PO in PEG400:Vitamin E TPGS (95:5). Dogs were dosed 0.33 mg/kg IV in DMA/PG/water (1:1:1) and 2 mg/kg PO in 1% HMPC.

- activity in cell-based assays (Table 1, Figure 3).
- prototype HIF-2α inhibitors (Table 2).
- selective for HIF-2α (Figure 5).
- human hepatocytes and high oral bioavailability in preclinical species.

CITATIONS

- 1) Jonasch et al. (2020) ASCO 2020, Abstract #500 2) Srinivasan et al. (2020) ESMO, Abstract #LBA26.
- 3) Hockel & Vaupel (2001) JNCI 93, 266-276.
- 4) Li et al. (2019) J Med Chem.

Hepatocyte Stability

SUMMARY

Three distinct compound series are undergoing iterative SAR optimization to develop novel HIF-2a antagonists. Representative compounds from each series show both HIF-2a binding and functional

Series 1 inhibitors have been optimized via structure-based design and interrogation of SAR trends to afford numerous potent advanced

A prototypical example, Compound 3, strongly inhibited HIF-2α target gene expression in Hep3B cells. In contrast HIF-1a target genes expression was minimally altered indicating Arcus inhibitors are highly

Optimized Arcus inhibitors, such as Compound 3, exhibit a favorable pharmacokinetic profile characterized by low intrinsic clearance in

3.	5)	Yu <i>et al.</i> (2019) Drug Disc Today 00, 1-9.
	6)	Rogers et. al. (2013) J Med Chem 56, 1739–1747
	7)	Data from Arcus test of molecule described in
		Wehn et al. (2018) J Med Chem 61, 9691-9721.
	8)	Xu et. al. (2019) J Med Chem 62, 6876–6893