AACR-NCI-EORTC Virtual International Conference on

MOLECULAR TARGETS AND CANCER THERAPEUTICS October 7-10, 2021

Potent and selective AXL tyrosine kinase inhibition demonstrates significant anti-tumor efficacy in combination with standard of care therapeutics in preclinical models

<u>Susan L. Paprcka</u>, Subhasree Sridhar, Irene Luu, Salema Jafri, Dillon Miles, Suan Liu, Ruben Flores, Shiwei Qu, Manjunath Lamani, Srinivas Paladugu, Cesar Meleza, James Wu, Hema Singh, Yu Chen, Sean Cho, Akshata Udyavar, Angelo Kaplan, Enzo Stagnaro, Xiaoning Zhao, Lixia Jin, Manmohan R. Leleti, Stephen W. Young, Jay P. Powers, Matthew J. Walters, Ester Fernandez-Salas

Arcus Biosciences, Hayward, CA

Susan L. Paprcka

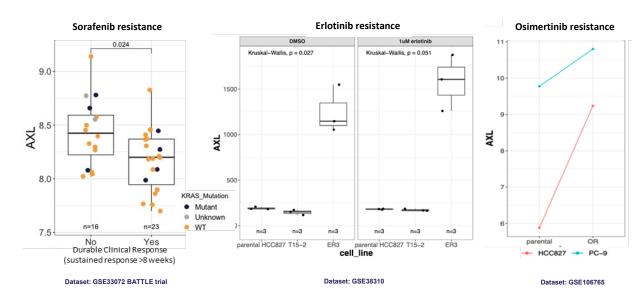
I have the following financial relationships to disclose:

Stockholder in: Arcus Biosciences (RCUS)

Employee of: Arcus Biosciences

I will not discuss off label use and/or investigational use in my presentation.

High AXL Expression Is Associated With Resistance to TKI Therapy



AXL Signaling

Ligand-Independent Ligand-Independent Ligand-Dependent Heterodimerization AXL Homodimerization JAK / PI3K RAF STAT1 **Twist** Snail SOCS_{1/} MEK / MMP's **AKT** Slug SOCS3 Invasion Immune Proliferation Survival **FMT** Migration Suppression

- Increased pro-tumorigenic signaling
- Decreased immune cell engagement & activation

AXL Expression is High in Tumors Resistant to TKI Therapies

- High AXL expression is correlated with lack of clinical response to Sorafenib
- High AXL expression is correlated with resistance to EFGR TKI's in vitro

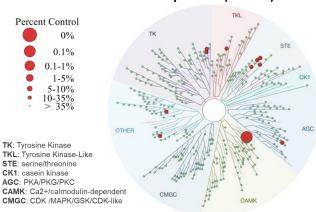
Novel Arcus AXL Inhibitors Are Potent & Highly Selective

Characterization & Comparison of Novel Arcus & Benchmark AXL Inhibitors

Assay ¹	Compound A	Compound D	Bemcentinib ²
hAXL HTRF IC ₅₀ (biochemical, nM)	2.8	3.0	5.2
mAXL HTRF IC ₅₀ (biochemical, nM)	0.95	1.4	2.7
hMERTK / hTYRO3 HTRF selectivity (biochemical, enzyme IC_{50} over AXL IC_{50})	130x / 39x	64x / 22x	42x / 33x
hAXL NanoBRET TM $K_{\rm D}$ (cellular, nM)	13	6.8	135
hERG (% inhibition at 10uM)	85	35	96

Percent Control 0% 0.1% 0.1-1% 1-5% 5-10% 10-35% > 35%

TK: Tyrosine Kinase


STE: serine/threonine CK1: casein kinase AGC: PKA/PKG/PKC ¹ Kinase activity of AXL, MERTK and TYRO3 were tested using HTRF KinEASE - TK kit (CisBio) in the presence of 700 μM ATP. Inhibitor engagement to intracellularly expressed AXL kinase domain was detected using AXL NanoBRET™ TE intracellular kinase assay (Promega) with transiently transfected HEK293 cells.

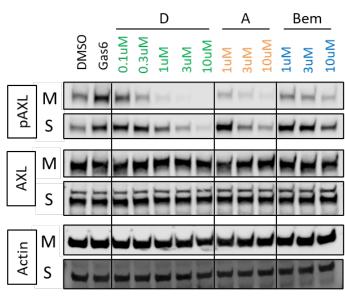
² Data generated by Arcus. Compound purchased from Synnovator.

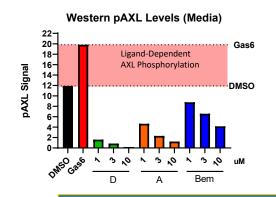
Bemcentinib (100 nM)

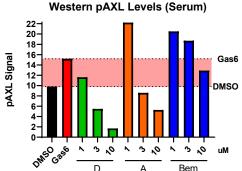
Compound D (100 nM)

Compound D Kinase K_d Values

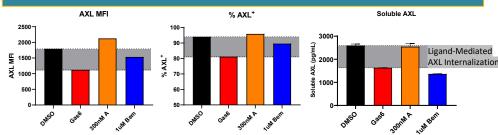
	a		
Kinase	K _d (nM)		
AXL	0.05		
MERTK	3.6 (72x)		
TYRO3	>1000		
BMPR1B	9.7 (194x)		
DRAK1	1.7 (34x)		
HPK1	23 (460x)		
MAP4K3	94 (1880x)		
MAP4K5	17 (340x)		
SGK	12 (240x)		
STK16	27 (540x)		
TNIK	18 (360x)		


Compounds A & D Inhibit pAXL Under Physiological (High Serum) Conditions


Concentration-Dependent Inhibition of AXL Phosphorylation Is Observed In Both Media & Human Serum



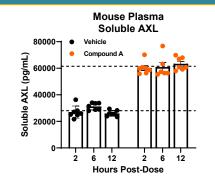
M = Media (RPMI + 10% FBS) S = 100% Human Serum

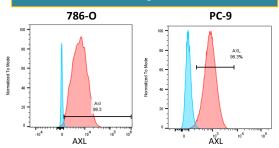

Bemcentinib ("Bem")

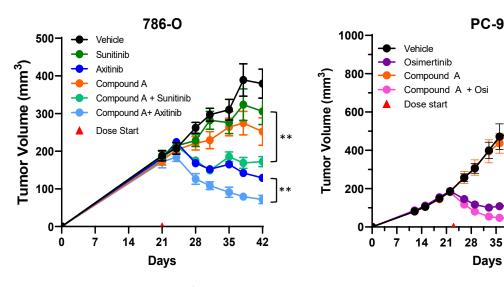
 ${\tt H1299\,cells\,were\,incubated\,with\,AXL\,inhibitors\,for\,1hr\,followed\,by\,stimulation\,with\,Gas6\,for\,15min}$

Compound A Increases and Maintains Surface & Soluble AXL Levels *In Vitro*

Panc1 cells were treated with AXL inhibitors for 1hr followed by addition of Gas6. AXL MFI and percentage was evaluated by flow cytometry and supernatant was used to determine soluble AXL levels by ELISA after 72hrs


Combined AXL & TKI Inhibition Results in Significant Tumor Control




Compound A Increases Circulating Soluble AXL Levels Indicative of Target Engagement

AXL Is Highly Expressed In Tumor Cell Lines Used in Xenograft Studies

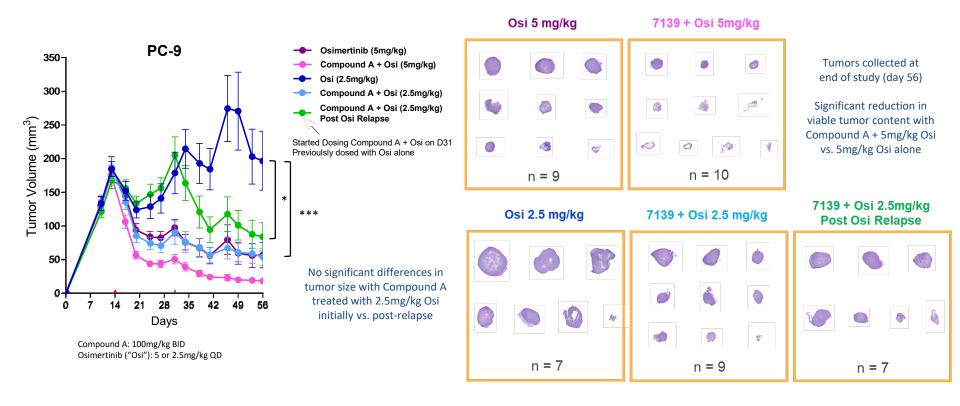
Compound A Significantly Reduces Tumor Growth In Combination With TKI Inhibitors

Compound A: 100mg/kg BID Sunitinib: 40mg/kg QD Axitinib: 40mg/kg BID

Compound A: 100mg/kg BID Osimertinib ("Osi"): 5mg/kg QD

35

All compounds given orally (PO) either twice-daily (BID) or once daily (QD)



Significant Efficacy Is Observed With AXL Inhibition In Combination with Osimertinib Initially & Post Relapse

Summary & Conclusions

- Novel potent (single-digit nanomolar potency) and selective inhibitors of AXL tyrosine kinase activity have been identified
- Arcus AXL inhibitors reduce both ligand-dependent and ligandindependent AXL activation/phosphorylation
- Significant anti-tumor activity is observed with specific AXL inhibitors in combination with targeted therapy and upon acquired resistance to TKI in xenograft models
- Selective AXL inhibition is a promising approach to overcome therapeutic resistance of tumors

