Population Pharmacokinetics and Pharmacodynamics of Etrumadenant (AB928) in Healthy Volunteers and Cancer Patients

PRESENTER:

Huali Wu

- Etrumadenant (AB928) an orally bioavailable, small-molecule. selective dual adenosine receptor (A2a and A2b) antagonist, reverses the immunosuppressive effects caused by high concentrations of adenosine in the tumor microenvironment.
- It is being evaluated in several clinical trials across multiple oncology indications.

OBJECTIVES

- Characterize the pharmacokinetics (PK) and pharmacodynamics (PD) of etrumadenant
- Inform dose selection for Phase 2 studies

METHODS

Study	Summary of Design	Number of Patients	Number of Samples
AB928CSP 0001	A Phase 1 dose escalation study of etruma in healthy adults	65 (PK) 71 (PD)	1046 (PK) 250 (PD)
AB928CSP 0002	A Phase 1/1b dose escalation study of etruma + PLD or etruma + PLD + IPI in breast or gynecologic cancer patients	28 (PK) 6 (PD)	479 (PK) 45 (PD)
AB928CSP 0003	A Phase 1/1b dose escalation study of etruma + mFOLFOX in gastrointestinal cancer patients	43 (PK) 7 (PD)	628 (PK) 46 (PD)
AB928CSP 0004	A Phase 1/1b dose escalation study of etruma + Carbo/Pem + Pembro or etruma + Carbo/Pem + AB122 in lung cancer patients	10 (PK) 6 (PD)	129 (PK) 41 (PD)
AB928CSP 0005	A Phase 1/1b dose escalation study of etruma + AB122 in advanced cancer patients	32 (PK) 12 (PD)	402 (PK) 117 (PD)

etruma: etrumadenant; PLD: pegylated liposomal doxorubicin; IPI: IPI-549; Carbo: carboplatin; Pem: pemetrexed; Pembro: Pembrolizumab; AB122: Zimberelimab.

- Data (AB928 capsule was used in all the studies)
- PK: plasma concentrations of etrumadenant (PK/PD model)
- and its glucuronide metabolite (PK model only)
- PD: percent inhibition of phosphorylated cAMP Response Element Binding protein (pCREB) levels in CD8⁺ T cells
- Population PK/PD analysis was performed using NONMEM (version 7.4, ICON, Hanover, MD, USA) and 1st-order conditional estimation method with interaction.
- Clinical simulations were conducted to predict etrumadenant PK and %pCREB inhibition at various dose levels.

CONCLUSIONS

- The PK of etrumadenant was adequately described by a 2compartment model with delayed first-order absorption from the gastrointestinal tract and first-order elimination from the central compartment
- Slower absorption with unchanged oral bioavailability when given with food
- Insignificant reduction in exposure when given with ARAs which may be further validated with more PK data
- No other clinically relevant PK covariates
- A direct effect PD model with complete inhibition at high concentrations of etrumadenant adequately described the inhibition of pCREB after etrumadenant treatment
- IC50 = 88.4 ng/mL, IC90 = 455 ng/mL
- No significant PD covariates
- At the selected Phase 2 dose of 150 mg once daily (QD), the majority of patients are projected to achieve the target PD response (90% pCREB inhibition)

be administered with concomitant ARAs and food.

K Model Structure		Γ]		
		Ora	I dose		
	k _{am} , t _i	agm			
			k _a , t _{lag}		
V _{Mp} /Fm O _M /Fm	V _{Mc} /Fm		• / _c /F	V _p /F	
Metabolite	Metabolite	Pa	irent	Parent	
Peripheral	Central	Се	ntral	Peripheral	
	CL _M /Fn	n	(1-FM)*CL/F		
	•		•		
^r _p /F: apparent volume of distribution in the periphera C Parameter Estimates	l compartment for AB9	28; V _{pm} /F _m : apparent volum	e of distribution in the p	eripheral compartment f	or AB928 glucuronio
Parameter	Estimate	Estimate RSE	IIV	IIV RSE	Shrinkage
		(%)	(CV%)	(%)	(%)
CL/F (L/h)	5.93	2.7	32.8	5.9	7.3
V _c /F (L), 70-kg body weight	57.8	4.3	22.9	13.4	25.0
Weight on V _c /F ^a	1.06	10.4	NA	NA	NA
Q/F (L/h)	11.9	5.3	NA	NA	NA
V _p /F (L)	104	5.2	57.0	11.2	15.9
K _a (1/h) (FAST)	2.6	15.2	76.0 (FAST) 37.1 (FED)	14.8 (FAST) 43.6 (FED)	46.4 (FAST 76 9 (FFD)
FED on K ₂ (ratio)	0.134	17.5	NA	NA	NA
t _{lag} for group 1 (h)	0.361	11.9	NA	NA	NA
t _{lag} for group 2 (h)	0.489	0.9	NA	NA	NA
Due u e utie u efecultie ete in enerum 1	0.544	14.2	NA	NA	NA
Proportion of subjects in group 1					
(ratio)					
(ratio) (L/h)	2.69	3.9	42.1	8.4	18.5
(ratio) CL _m /F _m (L/h) V _{cm} /F _m (L)	2.69 2.30	3.9 39.8	42.1 106	8.4 19.9	18.5 37.1
(ratio) CL _m /F _m (L/h) V _{cm} /F _m (L) Q _m /F _m (L/h)	2.69 2.30 6.37	3.9 39.8 15.4	42.1 106 NA	8.4 19.9 NA	18.5 37.1 NA
(ratio) CL _m /F _m (L/h) V _{cm} /F _m (L) Q _m /F _m (L/h) V _{pm} /F _m (L)	2.69 2.30 6.37 6.37	3.9 39.8 15.4 9.7	42.1 106 NA NA	8.4 19.9 NA NA	18.5 37.1 NA NA
(ratio) CL_m/F_m (L/h) V_{cm}/F_m (L) Q_m/F_m (L/h) V_{pm}/F_m (L) K_{am} (1/h) (FAST)	2.69 2.30 6.37 6.37 0.03	3.9 39.8 15.4 9.7 71.3	42.1 106 NA NA 132	8.4 19.9 NA NA 27.6	18.5 37.1 NA NA 40.6
Proportion of subjects in group 1 (ratio) CL_m/F_m (L/h) V_{cm}/F_m (L) Q_m/F_m (L/h) V_{pm}/F_m (L) K_{am} (1/h) (FAST) FED on K_{am} (ratio)	2.69 2.30 6.37 6.37 0.03 0.213	3.9 39.8 15.4 9.7 71.3 62.0	42.1 106 NA NA 132 NA	8.4 19.9 NA NA 27.6 NA	18.5 37.1 NA NA 40.6 NA
(ratio) CL_m/F_m (L/h) V_{cm}/F_m (L) Q_m/F_m (L/h) V_{pm}/F_m (L) K_{am} (1/h) (FAST) FED on K_{am} (ratio) Proportional ERR (%CV) for AB928	2.69 2.30 6.37 6.37 0.03 0.213 25.1 (HV)	3.9 39.8 15.4 9.7 71.3 62.0 4.7 (HV)	42.1 106 NA NA 132 NA NA	8.4 19.9 NA NA 27.6 NA NA	18.5 37.1 NA NA 40.6 NA 11.6 (HV)
Proportion of subjects in group 1 (ratio) CL_m/F_m (L/h) V_{cm}/F_m (L) Q_m/F_m (L/h) V_{pm}/F_m (L) K_{am} (1/h) (FAST) FED on K_{am} (ratio) Proportional ERR (%CV) for AB928	2.69 2.30 6.37 6.37 0.03 0.213 25.1 (HV) 31.3 (CP)	3.9 39.8 15.4 9.7 71.3 62.0 4.7 (HV) 3.0 (CP)	42.1 106 NA NA 132 NA NA	8.4 19.9 NA NA 27.6 NA NA	18.5 37.1 NA NA 40.6 NA 11.6 (HV) 9.3 (CP)
Proportion of subjects in group 1 (ratio) CL _m /F _m (L/h) V _{cm} /F _m (L) Q _m /F _m (L/h) V _{pm} /F _m (L) K _{am} (1/h) (FAST) FED on K _{am} (ratio) Proportional ERR (%CV) for AB928	2.69 2.30 6.37 6.37 0.03 0.213 25.1 (HV) 31.3 (CP) 28.6 (HV)	3.9 39.8 15.4 9.7 71.3 62.0 4.7 (HV) 3.0 (CP) 8.9 (HV)	42.1 106 NA NA 132 NA NA	8.4 19.9 NA NA 27.6 NA NA	18.5 37.1 NA NA 40.6 NA 11.6 (HV) 9.3 (CP) 6.0 (HV)
Proportion of subjects in group 1 (ratio) CL_m/F_m (L/h) V_{cm}/F_m (L) Q_m/F_m (L/h) V_{pm}/F_m (L) K_{am} (1/h) (FAST) FED on K_{am} (ratio) Proportional ERR (%CV) for AB928 Proportional ERR (%CV) for AB928	2.69 2.30 6.37 6.37 0.03 0.213 25.1 (HV) 31.3 (CP) 28.6 (HV) 26.9 (CP)	3.9 39.8 15.4 9.7 71.3 62.0 4.7 (HV) 3.0 (CP) 8.9 (HV) 3.0 (CP)	42.1 106 NA NA 132 NA NA NA	8.4 19.9 NA NA 27.6 NA NA NA	18.5 37.1 NA NA 40.6 NA 11.6 (HV) 9.3 (CP) 6.0 (HV) 10.6 (CP)
Proportion of subjects in group 1 (ratio) CL_m/F_m (L/h) V_{cm}/F_m (L) Q_m/F_m (L/h) V_{pm}/F_m (L) K_{am} (1/h) (FAST) FED on K_{am} (ratio) Proportional ERR (%CV) for AB928 Proportional ERR (%CV) for AB928 glucuronide AB928 elimination half-life (h)	2.69 2.30 6.37 6.37 0.03 0.213 25.1 (HV) 31.3 (CP) 28.6 (HV) 26.9 (CP) 23.2	3.9 39.8 15.4 9.7 71.3 62.0 4.7 (HV) 3.0 (CP) 8.9 (HV) 3.0 (CP) NA	42.1 106 NA NA 132 NA NA NA	8.4 19.9 NA NA 27.6 NA NA NA	18.5 37.1 NA NA 40.6 NA 11.6 (HV) 9.3 (CP) 6.0 (HV) 10.6 (CP) NA
Proportion of subjects in group 1 (ratio) CL_m/F_m (L/h) V_{cm}/F_m (L) Q_m/F_m (L) V_{pm}/F_m (L) K_{am} (1/h) (FAST) FED on K_{am} (ratio) Proportional ERR (%CV) for AB928 Proportional ERR (%CV) for AB928 glucuronide AB928 elimination half-life (h) AB928 distribution half-life (h)	2.69 2.30 6.37 6.37 0.03 0.213 25.1 (HV) 31.3 (CP) 28.6 (HV) 26.9 (CP) 23.2 1.8	3.9 39.8 15.4 9.7 71.3 62.0 4.7 (HV) 3.0 (CP) 8.9 (HV) 3.0 (CP) NA NA	42.1 106 NA NA 132 NA NA NA NA	8.4 19.9 NA NA 27.6 NA NA NA NA	18.5 37.1 NA NA 40.6 NA 11.6 (HV) 9.3 (CP) 6.0 (HV) 10.6 (CP) NA NA
Proportion of subjects in group 1 (ratio) CL _m /F _m (L/h) V _{cm} /F _m (L) Q _m /F _m (L) K _{am} (1/h) (FAST) FED on K _{am} (ratio) Proportional ERR (%CV) for AB928 Proportional ERR (%CV) for AB928 glucuronide AB928 elimination half-life (h) AB928 distribution half-life (h) RSE: relative standard error; IIV: interind volunteers; ERR: residual error. Group 1 a \$MIXTURE subroutine in NONMEM.	2.69 2.30 6.37 6.37 0.03 0.213 25.1 (HV) 31.3 (CP) 28.6 (HV) 26.9 (CP) 23.2 1.8 ividual variability s and group 2 are two	3.9 39.8 15.4 9.7 71.3 62.0 4.7 (HV) 3.0 (CP) 8.9 (HV) 3.0 (CP) NA NA NA	42.1 106 NA NA 132 NA NA NA NA efficient of variation th different values of	8.4 19.9 NA NA 27.6 NA NA NA NA NA a, CP: cancer patien of lag time estimate	18.5 37.1 NA NA 40.6 NA 11.6 (HV) 9.3 (CP) 6.0 (HV) 10.6 (CP) NA NA NA

- Covariate analysis indicated slower absorption but unchanged oral bioavailability of etrumadenant when given with food.
- Administration of etrumadenant with ARAs resulted in a small but insignificant reduction in etrumadenant exposure.
- None of the other investigated covariates (age, gender, body weight, study population, concomitant acid-reducing agents [ARAs], hepatic and renal function) have a clinically relevant impact on etrumadenant PK.

The preliminary PKPD analysis shown here supported the choice of 150 mg QD capsules as the etrumadenant dose in Phase 2 studies in patients with advanced malignancies. The preliminary PKPD analysis suggested etrumadenant capsule can

> to 1 in the model; K_a administration of B928 glucuronide; 3928 glucuronide.

Shrinkage (%) 7.3 25.0 NΑ NΔ 15.9 46.4 (FAST) 76.9 (FED) NΑ NA NA 18.5 37.1 NA NA 40.6 NA 11.6 (HV) 9.3 (CP) 6.0 (HV) 10.6 (CP) NA NA HV: healthy sing

Observed AB928 concentration (ng/mL)

PD Parameter Estimates

Parameter	Estimate	Estimate RSE	IIV	IIV RSE	Shrinka
		(%)	(CV%)	(%)	(%)
I _{max} (%)	100 FIX	NA	NA	NA	NA
IC ₅₀ (ng/mL)	88.4	9.4	51.4	12.4	26
HILL	1.34	5.8	NA	NA	NA
Additive Error (%)					
HV, Placebo	14.1	13.0			0
HV, AB928	5.3	8.1			12
Patient, AB928	13.2	9.4			3
IC ₉₀ (ng/mL)	455	NA	NA	NA	NA

IIV: interindividual variability; NA: not applicable; RSE: relative standard error.

Projected PK/PD Profiles of AB928 Following 150 mg QD

Ethylcarboxamidoadenosine. The dashed lines represent the model estimated IC₉₀ (455 ng/mL) (black) and NECA EC90 (1uM or 426.5 ng/mL) (green) in PK plot and 90% pCREB inhibition in PD plot. The solid lines represent the median and 2.5th and 97.5th percentiles

Clinical PK and PD simulations showed that a majority of subjects are projected to achieve the target etrumadenant response (90% pCREB inhibition) at the dose of 150 mg QD being evaluated in Phase 2 studies in cancer patients.

Take a picture to download the full paper

Huali Wu, Kai H. Liao, Linh Nguyen, Lisa Seitz, Lixia Jin, Ryan Criste, Bing Wang, Balaji Agoram

