Federation of Clinical Immunology Societies (FOCiS)
Annual Meeting, June 2022
Abstract 1189376

Anti-TIGIT Antibodies Promote Immune Activation in Combination with Immunotherapeutic Agents

Dana Piovesan, Ashwath Kumar, Soonweng Cho, Alejandra Lopez, Ferdie Soriano, Ada Chen, Xiaoning Zhao, Stephen W Young, Nigel Walker, Matthew J Walters, Kelsey E Sivick Gauthier

Arcus Biosciences, Inc.; 3928 Point Eden Way, Hayward, CA 94545 (USA)

OVERVIEW	RESULTS	RESULTS
TIGIT (T-cell immunoreceptor with Ig and ITIM domains) is an inhibitory receptor expressed on CD8 ⁺ T cells, CD4 ⁺ T cells, natural killer (NK) cells and regulatory T cells (T _{regs}).	Fc-enabled AB308 and tiragolumab Induce FcγR-mediated Signaling and Promote NK-mediated ADCC Against TIGIT-Expressing Target Cells	PD-1, TIGIT, and CD226 are Co-Expressed on Tumor Infiltrating T cells, Including Those with Stem-like (TCF-1 ⁺) and Terminally Differentiated (TIM-3 ⁺) Phenotypes
It competes with an activating receptor, DNAM-1/CD226, for shared receptor ligands (mainly CD155) that are expressed by cancer and antigen-presenting cells.	A) ^{8×10⁵}] ↓ ↓ FcyRI	A) PD-L1 ⁺ CD155 ⁺
Current data indicate that intratumoral expansion of TCF-1 ⁺ PD-1 ^{int} pre-dysfunctional (T _{PEX}) cells are critical for maintaining an ongoing anti-tumor response and are reported to be cellular targets of anti-PD-(L)1 therapy ¹⁻⁶ .	in finity in finity	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} 100\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

✤TIGIT and CD226 are co-expressed on intratumoral CD8⁺ T cells that may represent predysfunctional TCF-1⁺ PD-1^{int} populations and thus are probable targets for anti-TIGIT therapy.

AB308 (Fc-enabled) and domvanalimab (Fc-silent) are high affinity anti-TIGIT blocking antibodies that are currently undergoing clinical evaluation.

int = intermediate

RESULTS

Combination of Either Fc-Silent or Fc-Enabled Anti-TIGIT with Anti-PD-1 Enhances Tumor Control Over Anti-PD-1 Alone, But Activity of the Fc-Enabled Anti-TIGIT is Associated With Intratumoral T_{reg} Depletion in Mice

Figure 2. Characterization of FcyR binding and ADCC capability by AB308, tiraglolumab, and domvanalimab. (A) Using an ADCC Reporter Assay (Promega) and CHO cells expressing human TIGIT (hTIGIT-CHO), AB308 induces signaling via FcyRI and FcyRIIIa F158 and V158 varients. Activity normalized to highest concentration of AB308 (100 nM). (B) Representative histograms showing TIGIT expression and quantification (gMFI fold-change over isotype) on target cells. (C) (Left) Schematic of assay used to assess NK-mediated ADCC of TIGIT⁺ target cells. Target cells include parental CHO (pCHO), hTIGIT-CHO, healthy donor T_{regs} (CD4⁺CD25⁺CD127^{lo}) and healthy donor CD8⁺ T cells. (Right) Cytotoxicity quantified for each target cell. Paired symbols indicate treatment with human IgG1 isotype (**a**) or anti-TIGIT antibodies (\circ) for each NK donor (pCHO, hTIGIT-CHO) or NK/T donor pair (T_{reg} , CD8⁺). *****p*<0.0001,***p*<0.01, **p*<0.05, Sidak's multiple comparisons test vs. human IgG1 Isotype control. Tiragolumab was manufactured by Arcus using sequences disclosed in the WHO Drug Information proposed INN publication (List 117; Vol 31 No. 2, 2017).

Evaluation at the Single-cell Transcriptional Level of PD-1, TIGIT and CD226 on Tumor Infiltrating CD8⁺ T cells, Including Those with Pre-dysfunctional (T_{PEX}) Phenotypes

<u>Figure 1.</u> Differential effects of surrogate[^] mouse Fc-enabled (WT) and Fc-silent (FcS) anti-TIGIT antibodies in MC38 syngeneic tumor model. (A) Mice with established MC38 tumors were dosed with 5 mg/kg anti-PD-1 (Δ) and 10 mg/kg anti-TIGIT antibodies (∇) as indicated. Mixed effects analysis, Dunnett's multiple comparisons test vs. anti-PD-1. (B) At 3 days post-dose, expression levels of TIGIT (gMFI fold-change over isotype) and the percent of intratumoral T_{regs} (CD4⁺Foxp3⁺CD25⁺) in the tumor and spleen were quantified. Sidak's multiple comparisons test vs. Isotype and anti-PD-1 (B and C). ****p<0.0001, **p<0.05. Error bars denote median ± range while symbols represent individual mice. WT = mlgG2a backbone; FcS = mlgG2a backbone with L234A, L235A, and P329G (Eu numbering) mutations in the heavy chain.

^AB308 and domvanalimab do not bind mouse or rat TIGIT (data not shown)

<u>Figure 3.</u> Evaluation of TIGIT and CD226 gene expression in putative pre-dysfunctional CD8⁺ T cells in human NSCLC single-cell RNA sequencing (scRNAseq) datasets. Using two publicly available human NSCLC scRNAseq datasets (Guo *et al.* 2018⁷ & Gueguen *et al.* 2020⁸), pre-dysfunctional CD8⁺ T cells (T_{PEX}) were identified by applying filters to single-cell clusters in the following order: medium to high expression of PD-1, negative expression of TIM-3, and positive expression of granzyme K (GZMK). (A) UMAP plots mapping T_{PEX} cells, and percent of T_{PEX} of CD8⁺ T cells in NSCLC subjects within each dataset. Box plots with symbols representing a unique NSCLC subject. (B and C) UMAP plots mapping PDCD1, TIGIT, CD226 expression to total CD8⁺ T cells in (B) Guo *et al.* and (C) Guegen *et al.* datasets. Dotted lines within each plot outline T_{PEX} clusters for reference.

Commercially-sourced dissociated cells from NSCLC patient tumors were evaluated for expression of TIGIT and other markers by flow cytometry. **(A)** CD155 and PD-L1 expression on CD14⁺ monocytes (CD45⁺CD3⁻CD16⁻CD56⁻CD14⁺ CD16⁻), CD14⁺CD16⁺ monocytes (CD45⁺CD3⁻CD16⁻CD56⁻CD14⁺ CD16⁺), other myeloid cells (CD45⁻CD3⁻CD56⁻CD14⁻ CD16⁻CD19⁻SSC^{hi}) and cancer & stromal cells (CD45⁻). **(B)** Example contour plot (top) and quantification of CD8⁺ T cells (bottom) representing stem-like (TCF-1⁺TIM-3⁻) and terminally differentiated (TCF-1⁻TIM-3⁺) cells^{5,9}. **(C)** Example dot plots (top) and quantification (bottom) of markers associated with terminal exhaustion (CD39), cytotoxicity (Granzyme B; GZMB), circulating pre-dysfunctional T cells (Granzyme K; GZMK) and tissue residency (CD103). **(D)** Example histograms of PD-1, TIGIT, and CD226 expression on stem-like and terminally differentiated CD8⁺ T cells. **(E)** Percent positive and expression levels (determined by gMFI of percent positive cells) of PD-1, TIGIT and CD226 in T_{PEX} and terminally exhausted CD8⁺ T cells and **Bottom**: Percent of PD-1, TIGIT and CD226 co-expression cells. Each symbol represents a unique subject. Bars denote median ± range while lines connect populations from the same subject.

SUMMARY

Fc-enabled AB308, but not Fc-silent domvanalimab, has the capacity to bind Fcγ receptors and promote NK-mediated ADCC (Fig. 2).

- ♦ PD-1, TIGIT, and CD226 are co-expressed on both stem-like and terminally exhausted intratumoral CD8⁺ T cell subsets in NSCLC subjects at both the transcriptional (Fig. 3) and protein level (Fig. 4).
- TIGIT & CD226 co-expressing T_{PEX} are probable targets for anti-TIGIT therapy, akin to reported cellular targets of anti-PD-(L)1.

¹Siddiqui *et al.* 2019 Immunity ²Sade-Feldman *et al.* 2018 Cell ³Connolly *et al.* 2021 Science Immunol ⁴Jansen *et al.* 2019 Nature ⁵Miller *et al.* 2019 Nat Immunol. ⁶Van der Leun *et al.*, 2020 Nat Rev Cancer ⁷Guo *et al.* 2018 Nat Med ⁸Gueguen *et al.* 2020 Science Immunol ⁹Thommen *et al.* 2018 Nat Med.