HPK1 Inhibition Enhances T Cell Activation and Relieves the Immunosuppressive Effects of Extracellular Substances Found in the Tumor Microenvironment

AACR Special Conference, Tumor Immunology and Immunotherapy Oct. 21-24, 2022, Abstract B20

Bindi Patel, Rajesh K. Singh, Rameshwari Rayaji, Sachie Marubayashi, Sean Cho, Stefan Garrido-Shaqfeh, Joseph Kulusich, Cesar Meleza, Nidhi Tibrewal, Joice Thomas, Clement Opoku-Temeng, Pradeep Nareddy, Ehesan U. Sharif, Sharon Zhao, David Green, Manmohan R Leleti, Jay P Powers, Matthew J Walters, Daniel DiRenzo Arcus Biosciences, Inc.; 3928 Point Eden Way, Hayward, CA 94545 (USA)

INTRODUCTION

- Effective anti-tumor immune responses rely on sufficient T cell activation, which is actively suppressed by extracellular substances found in the tumor microenvironment (TME), including extracellular adenosine, prostaglandin E2 (PGE₂), and transforming growth factor beta (TGF- β).
- Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-specific Ste20-related serine/threonine kinase, is a negative regulator of TCR signaling, with the potential to enhance T cell activity while bypassing these immunosuppressive factors.
- Herein, we demonstrate that HPK1 inhibition enhances antigen-specific T cell response and can be combined with adenosine receptor blockade to overcome individual and combined suppressive factors found in the TME to restore T cell activation.

Figure 1. HPK1 functions as a negative regulator of TCR signaling. Schematic from Wu, P. et al. Structure 2019 Jan 2;27(1):125-133.

METHODS

- ◆ T cell experiments: CD8⁺ T cells were isolated from human blood and activated using anti-CD3/CD28 stimulation. Supernatants were assayed for IL-2, IFN- γ and TNF- α using cytokine bead array (CBA). Activation markers and SLP-76 phosphorylation (S376) were assayed by flow cytometry. OT-1 splenocytes were isolated from OT-1 mice and activated using ovalbumin specific residues (257-264) of varying affinity. Supernatants were assayed for cytokine secretion using CBA.
- **CRISPR knockout:** HPK1^{KO} CD8⁺ T cells and Jurkat cells were generated using Amaxa nucleofection of cells with Cas9 and gene-specific sgRNA sequences. Cells were recovered for at least 7 days prior to use.
- **Compounds:** Arcus HPK1 inhibitors and reference compound (You et al. *J Immunother. Cancer.* 2021) were used. Dual adenosine (A_{2a}R/A_{2b}R) receptor antagonist etrumadenant (etruma) was used to block the effects of synthetic adenosine receptor agonist NECA.

Figure 2. RNA expression data from Human Protein Atlas shows that MAP4K1 (HPK1) is the most abundantly expressed member of the MAP4K family in CD8⁺ T cell subsets.

RESULTS

Signaling; Calcium flux; Transcription; T cell activation

Figure 3. (A) CRISPR knockout of HPK1 in Jurkat cells was confirmed by Western blot. (B) Demonstration of on-target activity of Arcus HPK1 inh 1 in increasing IL-2 secretion in Ctrl vs HPK1^{KO} Jurkat cells. (C) CRISPR knockout of HPK1 in primary human CD8⁺ T cells was confirmed by Western blot. (D) CD3/28/2 activated HPK1^{KO} CD8⁺ T cells display increased IFN-γ (left panel) and TNF-α (right panel) secretion. (E) HPK1^{KO} CD8⁺ T cells display increased IFN-γ secretion in presence of individual inhibitory signals NECA (left panel) and PGE₂ (right panel). *=p<0.05,**=p<0.01.

Figure 4. In activated Jurkat cells, Arcus HPK1 inh_2 (A) decreases phosphorylation of SLP-76 (S376) and (B) increases IL-2 secretion. Arcus HPK1 inh 2 decreases CD3/28 activation-induced phosphorylation of SLP-76 (S376) in healthy human whole blood (C). In activated CD8⁺ T cells, Arcus HPK1 inhibitor increases IL-2 secretion (D). HPK1 inhibition increases CD8⁺CD69⁺ cells in CD8⁺ T cells after 24 hr activation (E), but it does not affect CD8⁺CD25⁺ cells from matched donors after 72 hr activation (F). ***=p<0.001.

0 1 0 1 0 1 (μΜ) ΗΡΚ1 DMSO NECA NECA PGE₂ NECA + PGE₂ DMSO NECA NECA PGE₂ NECA + PGE₂ + + + TGF-β + TGE-B PGE_2 TGF- β TGF- β PGE_2 TGF- β TGF- β Figure 6. HPK1 inhibition increases IFNy (A) and IL-2 (B) secretion alone or in the presence of suppressive adenosine

(NECA, 5 μM), prostaglandin (PGE₂, 10 nM) and TGFβ (TGFβ , 3 ng/mL) signaling in human CD8⁺ T cells. HPK1 inhibition significantly increases (C) IFN-y and (D) IL-2 secretion with the majority of combined suppressive signals. *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001.

using etrumadenant.

 HPK1 inhibition increases cytokine secretion in OT-1 splenocytes with the most enhanced effect observed in high affinity antigen activated splenocytes.

***** These data highlight HPK1 as an attractive target for immunotherapy as inhibiting HPK1 can boost T cell responses and amplify anti-tumor responses.