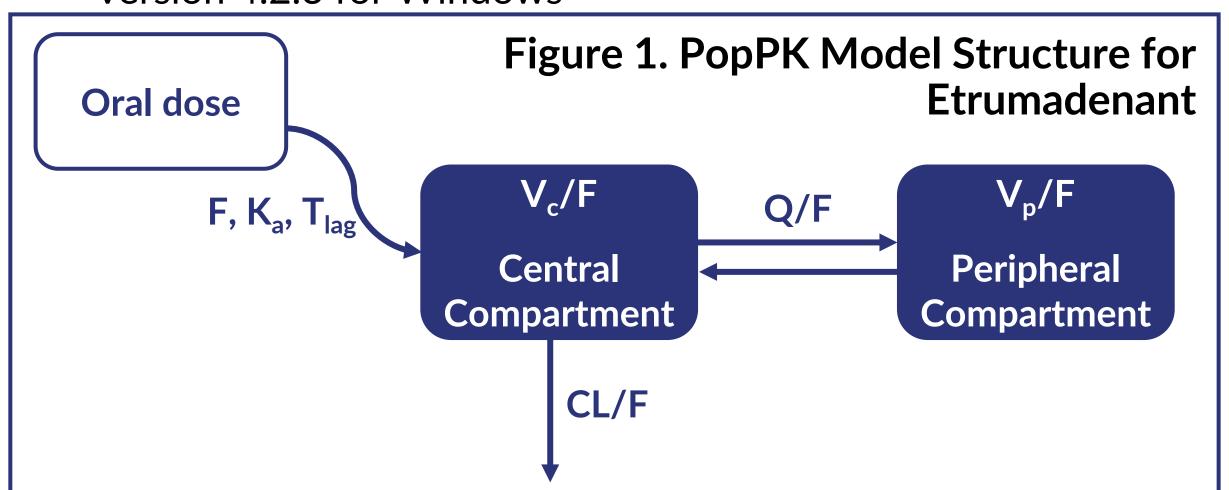

Food and Co-administration of Acid Reducing Agents (ARAs) Have No Clinically Significant Effect on the Pharmacokinetics of Etrumadenant, a Novel Dual Adenosine Receptor Antagonist –

Population Pharmacokinetic (PopPK) and Physiologically-Based (PBPK) Modeling Exploration

Jordon Johnson¹, Lilian Adeojo¹, Ken Liao¹, Bing Wang², Nikunjkumar Patel³, Balaji Agoram¹, and Lian Zhou¹ ¹Arcus Biosciences, Inc., ²Amador Bioscience, ³Certara, Inc. *Funding provided by Arcus Biosciences, Inc. and Gilead Sciences, Inc.

BACKGROUND


- Etrumadenant (etruma), is an orally bioavailable, selective, A2a and A2b receptor antagonist that has demonstrated safety and clinical activity in solid tumors when combined with chemo/ immunotherapy
- Etruma is a weak base with a pH-dependent solubility, potentially subject to absorption related drug interactions with acid reducing agents (ARAs)
- Many patients on chemotherapy take ARAs, and food restrictions limit patient adherence; a preliminary food effect study indicated the effect of food on etruma PK was minimal
- Across 11 studies, etruma has been co-administered with three types of ARAs: proton pump inhibitors (PPIs), histamine type 2 receptor antagonists (H2RAs), and antacids

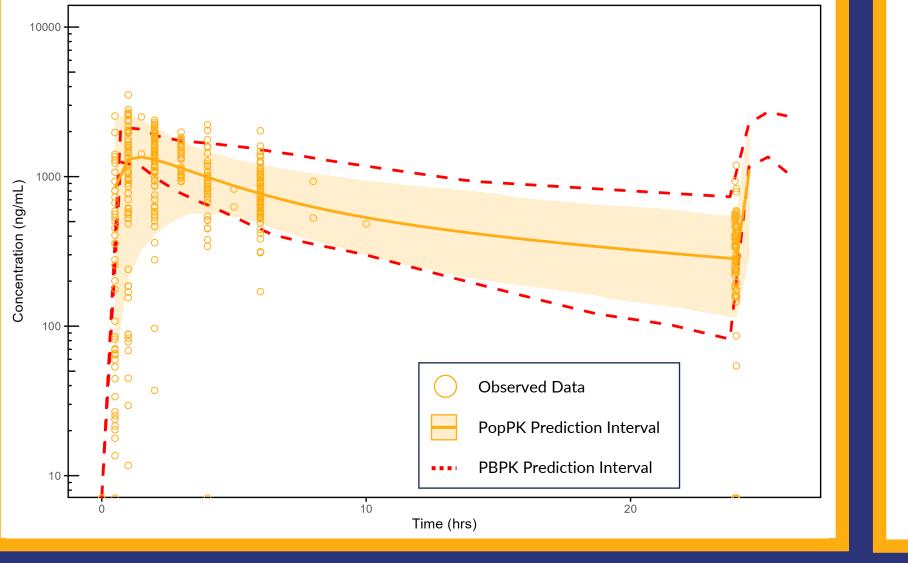
OBJECTIVE

 Use PopPK and PBPK modeling to evaluate the effects of ARAs and food on the PK of etrumadenant

METHODS

- PopPK analysis was conducted using nonlinear mixed effects modeling with the NONMEM software, version 7.5
- PBPK analysis was conducted using Simcyp software
- PBPK model was developed from physiochemical, in vitro experimental and clinical datasets
- Predictive performance of the model was verified by comparing model PK predictions with the observed clinical PK data of etruma
- Graphical and all other statistical analyses, including evaluation of NONMEM outputs, were performed using R version 4.2.3 for Windows

Table 1. Summary of Clinical Studies Evaluated


Study	ARC-1	ARC-2	ARC-3	ARC-4	ARC-5	ARC-6
Patient vs. Healthy	HV	Patient	Patient	Patient	Patient	Patient
N	65	35	44	46	48	111
Food Effect	11 (16.9%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	6 (5.4%)
pH Modulating Drugs						
Antacids	0 (0%)	15 (42.9%)	7 (15.9%)	22 (47.8%)	13 (27.1%)	31 (27.9%)
H2 Antagonists	0 (0%)	8 (22.9%)	6 (13.6%)	12 (26.1%)	2 (4.2%)	6 (5.4%)
PPI	0 (0%)	10 (28.6%)	15 (34.1%)	10 (21.7%)	13 (27.1%)	26 (23.4%)
Study	ARC-7	ARC-9	ARC-18	ARC-19	ARC-23	Total
Patient vs. Healthy	Patient	Patient	HV	HV	HV	
N	33	133	20	8	24	567
		- 1	- 11	- 4 •		40 (- 40 ()
Food Effect	0 (0%)	0 (0%)	0 (0%)	0 (0%)	23 (95.8%)	40 (7.1%)
pH Modulating Drugs	0 (0%)	0 (0%)	0 (0%)	0 (0%)	23 (95.8%)	40 (7.1%)
	11	33 (24.8%)	0 (0%)	0 (0%)	1 (4.2%)	40 (7.1%) 133 (23.5%)
pH Modulating Drugs	11 (33.3%)					

CONCLUSION: Supported by PopPK and PBPK modeling analyses

- Acid reducing agents (PPIs, H2RAs, and Antacids) can be co-administered with etrumadenant
 - Etrumadenant can be taken with or without food

RESULTS: PopPK & PBPK Models adequately predict etrumadenant PK profiles for Fed State, or on PPI/other ARA agent

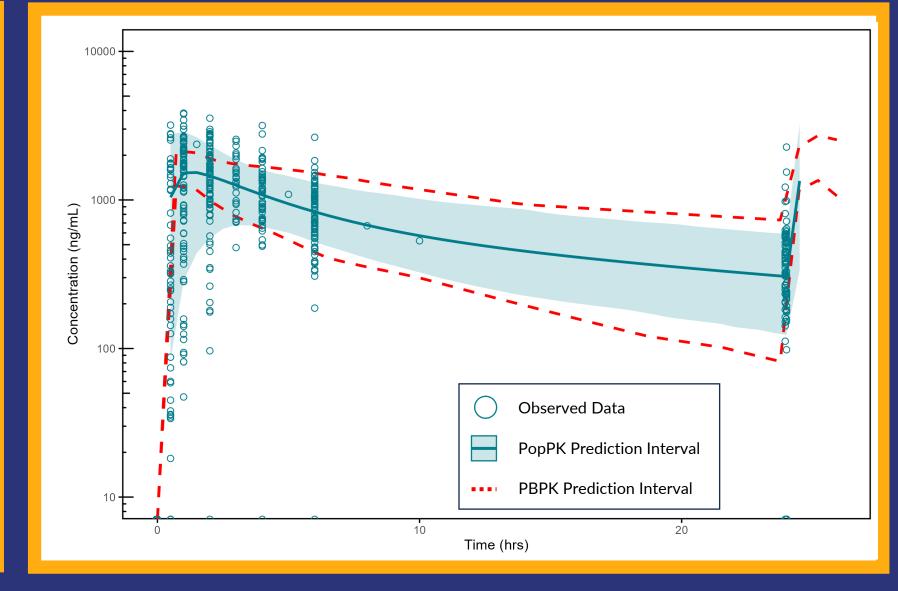
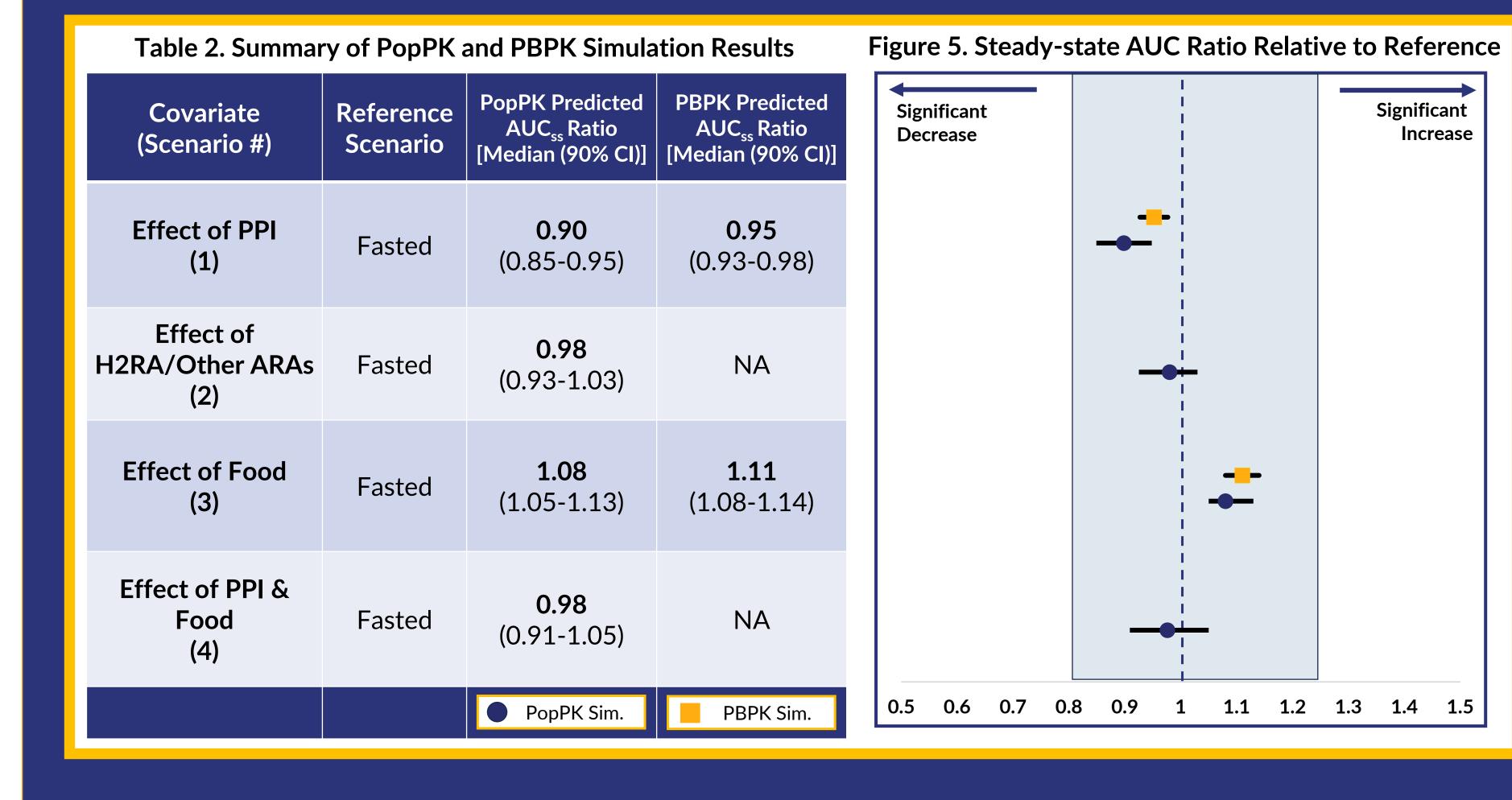


Figure 2. Fed State

Figure 3. Use of PPI


Figure 4. Use of Other ARA

RESULTS: Forest plot of predicted exposure and maximum concentration ratios at steady state based on PopPK/PBPK simulation

Significant

1 1.1 1.2 1.3 1.4 1.5

Increase

- Fasted patients with concomitant PPI use had a decreased etruma Cmax by 16.7% (90% confidence interval: 11.9-21.4%) and AUC by 10.2% (5.2-15.1%), compared to patients not using PPIs (Table 2, Scenario 1) Use of H2A or other ARAs decreased
- etruma Cmax by 6.8% (1.4-12.5%) with no effect on AUC (Table 2, Scenario 2) Fed condition decreased etruma Cmax by
- 10.6% (5-16.7%) and increased AUC by 8% (5-13%), compared to fasted patients (Table 2, Scenario 3)
- Patients with PPI use and in fed condition had no impact on AUC compared to patients not using PPIs while fasted (Table 2, Scenario 4)
- The AUC decrease in patients with PPI use is attenuated with use of food (Table 2, Scenarios 1 to 4)
- Effect of PPI and food estimated by PBPK modeling is consistent with PopPK results (Figure 5, yellow vs. blue)

Table 3. Parameter Estimates – PopPK Final Model							
Parameter	Parameter Estimate ^a	Parameter	Parameter Estimate ^a				
CL/F (L/h)	3.74 (3.4)	ARA1 on K _a	0.688 (23.7)				
V _c /F (L)	47.1 (3.8)	ARA2 on K_a	0.897 (23.6)				
Q/F (L/h)	6.63 (5.0)	ARA3 on K _a	1.46 (18.9)				
V _p /F (L)	62.7 (4.7)	ARA1 on relative F ^b	0.584 (4.7)				
K _a for fasted (1/h)	3.66 (17.4)	ARA2 on relative F ^b	0.637 (4.6)				
TLAG (h)	0.326 (0.2)	ARA3 on relative F ^b	0.650 (3.8)				
FED on KA	0.242 (17.8)	ARC-1 Form. on relative F ^b	0.586 (4.2)				
FED on relative F ^b	1.109 (2.3)	ARC-1 Form. on ALAG	1.45 (2.7)				
Unknown fasting condition on KA	0.389 (15.1)	ARC-19 on F	0.671 (8.9)				
Unknown fasting condition on relative F ^b	0.963 (2.4)						
Weight on CL/F	0.366 (18.3)	$\eta_{CL/F}$	32.9 (3.5)				
Weight on Vc/F	1.03 (7.0)	$\eta_{Vc/F}$	23.5 (8.0)				
AGE on Vc/F	0.287 (15.4)	$\eta_{Vp/F}$	57.3 (7.0)				
Weight on Vp/F	0.651 (29.6)	η_{Ka}	120 (5.7)				
CP Proportional Error (%CV)	38.0 (1.9)	HV Proportional Error (%CV)	27.5 (2.8)				

healthy volunteers: ARA1: Patients with a PPI use: ARA2: Patients with antacid or H2RA and no PPI use restriction; ARC-1 Form: alternative formulation used in study ARC-1; CP: cancer patients; HV: Healthy volunteers; CL/F is apparent clearance; V_c/F is apparent central volume; Q is intercompartmental clearance V_n is peripheral volume; K_a is absorption rate constant; TLAG is absorption lag time; η is the between subject

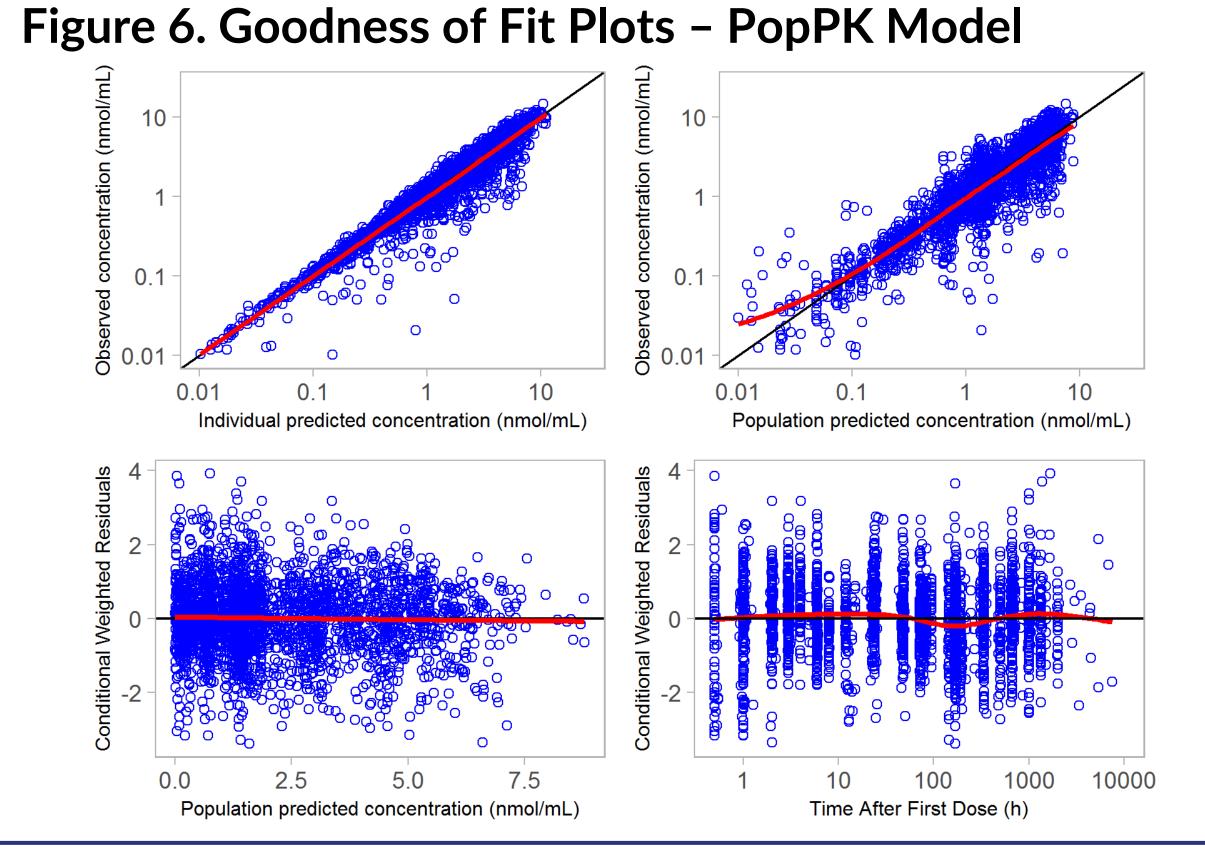


Table 4. Summary of PBPK Model Comparisons GMR (%) Observed/Predicted Cmax **Population** AUC_{0-24h} 89/90 Fed 108/110 83/94 90/95 PPI